GCE AS

PHYSICS - AS component 1

TUESDAY, 14 MAY 2019 - MORNING

Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each AS component 1 Physics examination.

Centres are asked to issue this booklet to candidates at the start of the AS Physics course to enable them to become familiar with its contents and layout.

Values and Conversions

Fundamental electronic charge

$$
\begin{aligned}
e & =1.60 \times 10^{-19} \mathrm{C} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
g & =9.81 \mathrm{~ms}^{-2} \\
g & =9.81 \mathrm{Nkg}^{-1} \\
h & =6.63 \times 10^{-34} \mathrm{Js} \\
c & =3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
\sigma & =5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\
W & =2.90 \times 10^{-3} \mathrm{mK}
\end{aligned}
$$

Mass of an electron
Acceleration due to gravity at sea level
Gravitational field strength at sea level
Planck constant
Speed of light in vacuo
Stefan constant
Wien constant

$$
1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
$$

$\rho=\frac{m}{V}$					$I=\frac{\Delta Q}{\Delta t}$
$v=u+a t$					$I=n A v e$
$x=\frac{1}{2}(u+v) t$					$R=\frac{V}{I}$
$x=u t+\frac{1}{2} a t^{2}$					$P=I V=I^{2} R=\frac{V^{2}}{R}$
$v^{2}=u^{2}+2 a x$					$R=\frac{\rho l}{A}$
$\Sigma F=m a$					$V=E-I r$
$p=m v$					$\frac{V}{V_{\text {total }}}\left[\text { or } \frac{V_{\text {out }}}{V_{\text {IN }}}\right]=\frac{R}{R_{\text {total }}}$
$W=F x \cos \theta$					$T=\frac{1}{f}$
$\Delta E=m g \Delta h$					$c=f \lambda$
$E=\frac{1}{2} k x^{2}$					$\lambda=\frac{a \Delta y}{D}$
$E=\frac{1}{2} m v^{2}$					$d \sin \theta=n \lambda$
$F x=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$					$n=\frac{c}{v}$
$P=\frac{W}{t}=\frac{\Delta E}{t}$					$n_{1} v_{1}=n_{2} v_{2}$
$\text { efficiency }=\frac{\text { useful energy transfer }}{\text { total energy input }} \times 100 \%$					$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$F=k x$					$n_{1} \sin \theta_{\mathrm{C}}=n_{2}$
$\sigma=\frac{F}{A}$					$E_{\mathrm{k} \text { max }}=h f-\phi$
$\varepsilon=\frac{\Delta l}{l}$					$p=\frac{h}{\lambda}$
$E=\frac{\sigma}{\varepsilon}$					
$W=\frac{1}{2} F x$					
$\lambda_{\max }=\frac{W}{T}$					
$P=A \sigma T^{4}$					
		ons			
particle (symbol)	electron (e^{-})	electron neutrino $\left(v_{\mathrm{e}}\right)$	up_{o}	down (d)	
charge (e)	- 1	0	$+\frac{2}{3}$	$-\frac{1}{3}$	
lepton number	1	1	0	0	

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zetta	Z

Areas and Volumes

Area of a circle $=\pi r^{2}=\frac{\pi d^{2}}{4} \quad$ Area of a triangle $=\frac{1}{2}$ base \times height

Solid	Surface area	Volume
rectangular block	$2(l h+h b+l b)$	$l b h$
cylinder	$2 \pi r(r+h)$	$\pi r^{2} h$
sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

Trigonometry

$$
\sin \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}, \quad \cos \theta=\frac{\mathrm{QR}}{\mathrm{PR}}, \quad \tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}, \quad \frac{\sin \theta}{\cos \theta}=\tan \theta
$$

$$
P R^{2}=P Q^{2}+Q R^{2}
$$

